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Abstract 

Noise reduction is a fundamental aspect of stress 

electrocardiogram (ECG) recording. In this setting, 

muscular noise represents the main antagonist to signal 

quality. A possible solution to muscle noise in stress ECG 

is to exploit the information redundancy in 12-lead 

recordings to reduce noise while preserving the ECG 

signal. Source Consistency Filtering (SCF) is a spatial 

redundancy filter that follows this principle. 

In this paper, we compare the muscle noise rejection 

performance of conventional 25Hz and 40Hz low-pass 

filters (LPFs), the SCF and a method based on singular 

value decomposition (SVD) which exploits both the 

spatial and temporal correlation in the ECG signal. 

Our results indicate that the SCF can afford a QRS 

complex distortion lower than that of a 40 Hz lowpass 

filter while still maintaining a high noise rejection. The 

QRS detection accuracy on the filtered ECG was 

comparable for all methods except for the SVD filter, 

which allowed a superior detection performance score in 

all the records. 

 

 

1. Introduction 

The interpretation of morphology and rhythm of the 

electrocardiogram is based on signals with good quality. 

While this is not an issue in resting ECG, noise rejection 

is required in Holter or stress ECG, as well as ECG 

recorded with wearable devices. The manifestations of 

noise in ECG may be divided in low frequency and high 

frequency noise [1]. High frequency noise is caused by 

powerline interference and skeletal muscle activity. For 

the former, stop band and nonlinear, sinusoid-based filters 

are established countermeasures [2]. Muscle noise 

represents a more complex interference, where the 

frequency content of the myographic potential is 

overlapping with the characteristic ECG band, typically 

from 5 to 100 Hz [3]. The most straightforward approach  

is to reduce excessive muscle noise is to low-pass filter 

the ECG signal. However, any low-pass filtering 

operation up to 100 Hz will inevitably distort the 

characteristic waves of ECG [4]. The choice of cut off 

frequency of the low-pass filter is then a compromise 

between noise rejection and wave distortion. As most of 

the frequency content of ECG waves lies under 40 Hz [5], 

40 Hz low pass filters are commonly used in ECG stress 

recording devices. 

Other muscle noise ECG filters have been proposed in 

the literature, with different properties of noise reduction, 

wave distortion, and computational complexity. Among 

the different techniques that have been proposed, we 

mention time-varying filters [6], filter banks [7], wavelets 

[8], warped polynomials [9], the Kalman filter [10], SVD-

based eigenfilters [11] and the source consistency filter 

[12]. The general principle in many of these approaches is 

to adapt the noise rejection action to the local 

characteristics of the ECG signal. One way that this can 

be achieved is to take advantage of the information 

redundancy in 12-lead ECG, as the ECG signal is 

correlated between leads while noise typically is not. The 

source consistency filter and the SVD-based method rely 

on this assumption. 

In this paper, we evaluate the source consistency filter 

with respect to the conventional low-pass filter. 

Additionally, we also propose an SVD-based method that 

takes into account both the spatial and temporal 

consistency of the signal, to further investigate the noise 

rejection potential of redundancy in 12-lead ECG. 

 

2. Methods 

The ECG signal recorded with electrodes can be 

considered as 𝒚 = 𝒙 + 𝜺, where 𝒙 is the “true” ECG 

signal and 𝜺 is the noise term, When a noise reduction 

filter is applied to 𝒚, the 𝜺 term is reduced while 

preserving the true signal 𝒙. For this reason, in the filter 

evaluation we performed, we measured the performance 

of the different filters by comparing the difference 
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between the filtered signal 𝐻(𝒚) and the real signal 𝒙. In 

this work, we focused on muscle noise, i.e. we assume the 

𝜺 term to represent only muscle noise. 

 

2.1. Data 

In order to obtain a true ECG signal 𝒙, completely free 

of noise, we used the ECG simulator described in [13]. 

We synthesized 40, 5-minute long ECG records. In order 

to simulate the high-frequency muscle noise, we added 

bursts of gaussian white noise in the electromyographic 

frequency band, 5 to 70 Hz, thus obtaining the noise-

corrupted 𝒚 signals. The added noise was uncorrelated 

between leads, and frequency band limits varied from 

lead to lead. The SNR ratio of each burst of noise varied 

randomly from -10 to -1 dB. For the evaluation of QRS 

detection on filtered ECG, we also considered 40 real 

stress ECG recordings, where additional noise was added 

with the same method described above. 

 

2.2. Low-pass filters 

Two linear phase low-pass filters were considered as 

reference methods, with cut-off frequencies at 25 and 40 

Hz, respectively. 

 

2.2. Source-Consistency Filter 

The source-consistency filter [12] takes advantage of 

the redundancy of spatial information in 12-lead ECG to 

preserve the true signal and reduce muscle noise, which is 

uncorrelated. In source-consistency filtering, the input 

signal 𝒙 is high-pass filtered to remove most of the 

PQRST waves. The cut-off frequency of the high-pass 

filter in this study was set to 25 Hz. The 8 independent, 

high-pass filtered leads are estimated by least squares 

regression. The agreement between the high-pass filtered 

signal 𝒉 and the estimated signal 𝒉̂ is determined by 

consistency, 𝑐. Consistency modulates the filter output in 

a continuous way: 𝒚 = 𝒙 − (𝑐 − 1)𝒉. Consistency is 

averaged in a window, which we set to 50 ms. The least 

squares regression coefficients for the estimation of 𝒉 are 

calculated in the QRS portion of averaged ECG. 

 

2.2. Spatiotemporal Eigenfilter 

The ECG at each lead is autocorrelated, and cross-

correlated  with the ECG at each other lead. Conversely, 

muscle noise affecting each lead is typically poorly 

autocorrelated and  not cross-correlated  with the noise 

affecting the other leads. In turn, noise is not cross-

correlated with the ECG signals. The proposed 

spatiotemporal eigenfiltering (STEF) method for the 

extraction of ECG from noisy signals exploits both these 

autocorrelation and cross-correlation differences. The 

signal is decomposed and reconstructed with few 

eigenvalues, which account for almost all signal 

information. 

The STEF method combines the auto and cross-

correlation information by applying the singular values 

and singular vectors decomposition the matrix 𝑨 

𝑨 = [
𝑥1
0 … 𝑥1

𝑤

… … …
𝑥1
𝑁−𝑤 … 𝑥1

𝑁
]… [

𝑥𝐿
0 … 𝑥𝐿

𝑤

… … …
𝑥𝐿
𝑁−𝑤 … 𝑥𝐿

𝑁
] 

where 𝑥𝑘
𝑖  refers to the sample of the input signal 𝒙 of lead 

𝑘 at time 𝑖, 𝑁 is the length in samples of the ECG signal 

to be filtered, 𝐿 are the independent leads and 𝑤 is the 

temporal embedding window size. In other words, the 

matrix 𝑌 is built by concatenating 8 Hankel matrices, one 

for each ECG lead. Each Hankel matrix is individually 

built by repetition of a single lead translated in time up to 

a number of samples 𝑤. 

The matrix 𝑨 is decomposed by SVD, thus resulting in 

𝑨 = 𝑼𝑺𝑽T 

where the columns of U are the left singular vectors, the 

columns of 𝑽 are the right singular vectors and 𝑺 is a 

diagonal matrix of singular values. SVD is thus applied to 

a matrix in which each ECG signal appears 𝑤 times. The 

signal is reconstructed by first setting to zero the singular 

values after the 𝑝-th one, where 𝑝 = 8 was determined 

empirically. The corresponding singular value matrix, 𝑺𝑟, 

has only 𝑝 ≤ 𝑞 of the  original 𝑞 = 𝑤𝐿 singular values. 

The reconstructed 𝑩 matrix  is given by 

𝑩 = 𝑼𝑺𝑟𝑽
T 

The reconstructed, filtered signal 𝒙𝑟 is obtained by 

averaging the cross diagonals of 𝑩 for each lead 𝑘: 

𝑩(𝑘) = [
𝑏𝑘
0 … 𝑏𝑘

𝑤

… … …
𝑏𝑘
𝑁−𝑤 … 𝑏𝑘

𝑁
] 

The singular values and vectors are calculated in the 

initial phase of the stress ECG recording, where the noise 

power is much lower than the ECG power. The 

eigenvectors associated with the largest singular values 

take into account the changes that occur with the highest 

correlation on the 𝑤𝐿 signals (including cross-correlation 

and autocorrelation). Since the ECG is commonly much 

more cross-correlated and autocorrelated than noisy 

components, the first eigenvalues will account for the 

signal components. 

 

3. Results 

We evaluated the filtering accuracy of the considered 

methods with three metrics, shown in Table 1, Table 2 

and Table three. The first metric is the mean error 

between the noise-free simulated ECG 𝒙 and the filtered 

signal 𝐻(𝒚). The second metric is the mean error for QRS 

complexes only, which was calculated on 100ms long 

windows centered on each QRS complex. 
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Table 1. Mean average error between clean ECG and 

filtered ECG. The error is averaged between all records 

and all independent leads. 

 

Algorithm  Global error  

MAE, µV 

QRS error 

MAE, µV 

No filter 98.08 12.01 

25 Hz LPF 44.42 9.57 

40 Hz LPF 70.16 8.94 

SCF 53.11 8.23 

STEF 37.36 10.51 

 

While the lowest overall error was achieved with the 

STEF method, SCF achieved the lowest QRS complex 

distortion. The third metric of filtering performance we 

report is the average, minimum, and maximum F1 score 

of QRS detection, shown in table 2. 

 

Table 2. Mean QRS detection F1 score for all simulated 

records. Minimum and maximum values are reported in 

the brackets. 

 

Algorithm  QRS detection, F1 

Mean (min – max) 

No filter 0.970  (0.749  –  1.000) 

25 Hz LPF 0.973  (0.762  –  1.000) 

40 Hz LPF 0.969  (0.749  –  1.000) 

SCF 0.970  (0.756  –  1.000) 

STEF 0.997  (0.980  –  1.000) 

 

QRS detection performance was calculated for each 

independent ECG lead as a measure of QRS signal 

distortion. The STEF method allowed superior QRS 

detection performance in all leads, even in the worst 

cases. 

We also calculated QRS detection on real, annotated 

stress ECG data, where simulated noise (section 2.1) was 

added to the real noise already present.  

 

Table 3. Mean QRS detection F1 score for real ECG 

records with added simulated noise. Minimum and 

maximum values are reported in the brackets. 

 

Algorithm  QRS detection, F1 

Mean (min – max) 

No filter 0.994  (0.766  – 0.999) 

25 Hz LPF 0.995  (0.774  – 0.999) 

40 Hz LPF 0.994  (0.760  –  0.999) 

SCF 0.994  (0.776  –  0.999) 

STEF 0.998  (0.989  –  1.000) 

 

These results were obtained with MATLAB. The QRS 

detection method we used is described in [14]. We also 

show an example of filter output (red) superimposed to 

real noisy ECG (black) in Figure 4. This plot was 

obtained from a real 12-lead stress ECG recording 

without adding simulated noise, and lead II is shown for 

each of the four filters. 

 
Figure 1. Example of real muscle noise filtering from 

stress ECG. The same lead II of a real noisy ECG 

recording is shown. The black signal is unfiltered ECG, 

the red signal is the filtered output for the four methods 

we considered. 

 

4. Discussion and conclusion 

The different characteristics of the filters we 

considered in this evaluation can be highlighted in Figure 

4. The 40 Hz filter is able to preserve most of the QRS 

complex amplitude, but muscle noise is still partially 

present in the output. The 25 Hz filter smooths both the 

noise and the upward tip of the QRS complex. The SCF 

appears as a compromise between the two, where he 

filtering action is modulated by the consistency between 

leads. In windows where consistency is high, i.e. around a 

QRS complex, the output is unfiltered. When consistency 

equals zero the output is effectively a 25 Hz low-pass 

filter, which is the minimal cut-off frequency we set. 

Lastly, the STEF filter shows a remarkable ability to 
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maintain a stable baseline even in the presence of high 

intensity noise. However, a distortion of QRS complex 

can also be noted, which is not caused by frequency cut-

off but from the inexact reconstruction of the subspace of 

the 𝑝 < 𝑀 eigenvectors instead. 

Regarding the source consistency filter, we showed 

how the minimal cut-off frequency we set to 25 Hz 

translates to a QRS distortion comparable to that of a 40 

Hz filter. The muscle noise spectra extends below 25 Hz, 

however further lowering the minimal frequency cut-off 

of the SCF may include excessive QRS complex energy 

in the least squares estimation. This, in turn, would render 

the solution unstable due to excessive correlation between 

the high-pass filtered leads. The other fundamental 

parameter of the SCF method is the consistency function, 

which is averaged on a window. Further study on the 

consistency function and the window size could possibly 

improve the noise rejection and wave preservation 

characteristics. 

The STEF method we introduced reached the lowest 

overall filtering error, although with a QRS distortion 

greater than the SCF. Additionally, QRS detection 

performance on ECG records filtered with this method 

was the highest in all leads, thus demonstrating the ability 

of this filter to take full advantage of information 

redundancy to extract ECG from bursts of high intensity 

noise. We speculate that the method may fail to recover 

the ECG when the structure of the interdependence 

between the leads changes over time during the stress 

test. For this reason, a evaluation on ischemic events is 

required. In addition, the effect of low-frequency artifacts 

and channel loss on filtering performance should also be 

investigated. 

The major limitation of this work is indeed the 

simplistic noise model we adopted, which is filtered 

gaussian white noise. Future developments of this work 

should also focus on more realistic noise simulation 

algorithms. 
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